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Calibrated linear methods for ana lysis and design
Ol yielding RC structures

J.F. Bonacci'

ABSTRACT
This paper explores [hc_dcwlopnmm of a method that is useful for design of reinforced concrete
frame structures to resist earthquakes. The method, onginally proposed in the 1970s, makes

RC) g oy s . |
fm qnalogy between HBL-‘C':*?*]}’ damped hinear and hysteretic response for the purpose of estimating
maximum displacement. Recent dynamic test results are used to extend significantly the calibration

of the method.

DRIFT AS A DESIGN CONSIDERATION

Despite the terminology and packaging associated with regular practice in designing for earth-
guake resistance, what really matters 1s how a structure performs if it is shaken by a significant
earthquake. Figure 1 represents load-displacement responses of two structural systems. Conventional
structural design philosophy (Fig. 1a) is understood in terms of demand and supply along the load
axis. Some time ago, designers came to a realization that there were several aspects of the earthquake
problem (dynamic eq_u‘lhbnum. loading that is unpredictable in terms of amplitude, frequency content,
duration, and probability of occurrence) that made it implausible to fit into this conventional outlook.
When structural response 1s idealized as linear (Fig. 1a), the relationship between displacement and
load demands are clear, so displacements are of secondary importance and the attention they are given
amounts to a verification. When response is nonlinear (Fig. 1b), the displacement axis is the only
meaningful indicator of demand. Load demand loses physical meaning once it exceeds the supplied

resistance.
All performance-related questions in design for earthquake resistance can be related to displace-
ment demand:
1. Will story dnift be too much for attached elements?

2. Will displacement cause collision with adjacent structures?
3. Will dnft level demand too much deformability from the elements?

4. Will displacements bring about excessive secondary effects?
If it could be shown that a structure satisfied the above questions, then its supply of resistance along
the load axis would be inconsequential.

| _Many current codes give the impression that design can be managed by control along the load
4x1s n a fashion similar to wind design. Load demand is determined and then reduced by a quantity
that is sensitive in an empirical way to the redundancy and deformability inherent to various structural
systems. The resistance to be provided is linked to this reduced design load and it is understood
that this implies yielding response in the design earthquake. Displacements are calculated for the

PUurpose of checking only after design loads have been set. Displacement response is'assumed' to
?c inearly related to the unreduced load demand. Because of the strong parallels to linear design
@5 say for wind), the framework of this approach conceals the fundamental differences in demand
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f dynamic tests of SDOF RC bents Substitute

ries 0 - ate ’ fFC{ vienc e .
a SE0C°  absolute acceleration to measured maximum ¢ cor e 08 taken as the ratio of messwes

u isplac
maxlm o stiffness that would be observed in l{)ad*displazzﬁiiiimclm-mspf?nse, which is related to the
ﬂPpayrieelding Jie STMNes Was fcompulcd on the assumption that {;1  eeriy e PR
the tion of motion was balanced by a linear dashpot in order

the d“ra.d 1o determination of the appropriate value of 3. in for the system to come to rest. This
: g

the expression

Ly

, {
J{}S [an'w.! / £26“ g ; -
0 ] m A ylfdt (‘l)

was the substitute damping ratio, m the mass, w, the

whcl:'e ﬁa ..o response, i the base ac . SUbSFitule circular frequency, = the
ative yelocity resp J celeration, and t; the duration of shaking. It was shown

d displacement response was suitably approxi '

( measurc . : _ : pproximated from linear spectra of the actual
:-,.h:se motion (14 rans smusoildal, 4 runs _Slmulaimg El Centro NS 1940, and 10 prsﬁs simulating Taft
N21E 1952) when the substitute properties (w, and j3,) were used. This result was then formulated
method for determining design base shear based on an admissible ductility ratio, u. For this

. a .
m;fposc, it was sugges_tcd to lengthen the period based on cracked sections by ,/z for substitute period
P : ). Substitute damping was related to g with an expression pattemed after the Takeda

lacing Ws/-
11970) hysteresis modcl
B, =0.02+0.2(1-1//n) (2)

which was shown to provide a reasonable representation of substitute damping ratios deduced from

The substitute structurc method (Shibata and Sozen 1976) is the extension of Gulkan’'s SDOF

hase shear prescription to RC frames with more than one degree of freedom. Substitute period and
damping Were based on tolerable damage (ductility) ratios, p;, for vanous elements of the frame. In
this manner, the designer could establish both the extent and relative distribution of damage to beams
and columns. For each element, stiffness was reduced by 1/u; times the value for cracked section.

ubstitute frequency was computed from linear analysis using reduced stiffness values. To compute
: s for the full frame for individual modes, substitute damping ratios computed

the basis of u; (Eq. 2) were weighted according to relative flexural strain energy

P,' | 3)
/Gm - Z(‘i"—ﬁ:)ﬁst (

1

: : % in energy for
where B, is the smeared modal substitute damping ratio | m, £ 151 ﬂ;;ﬁ{a: S[{Vai& sub%zit e
an element i in mode m, and J,; is the substitute damping ratio for an ele . _

properties thus defined, modal responses were read fr%?e lmrfnaé‘i ;Sabeneﬁt O wcthiod wat e
displacements, base shear, and member design forces. P drift) while requirements could

based design on issues related to performance (tolerable damaget agtﬁer iy e 5
still be stated in terms of design forces, as 15 customary for mos
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1S ideal for further investigation of lncar analo motions WeTt used.

test results for which simulate  the data set.
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acceleration signals

H(1) = /{[:z il - (1)} dt

where [ + () is the absolute acceleration response at the center of mass and j(t) is (h. o

N -
g I 541 % b
e

acceleration. The integral was very sensitive to baseline error in the parent signals. Gulkan (105,

i 19
I

applied a parabolic adjustment to the acceleration baseline. In the present study, digital filter

T =
I-
=

extreme low-frequency components produced a satisfactory velocity signal. The process. as ii1yc..

in Fig. 4, was to integrate the uncorrected relative acceleration signal (z; RHS of Eq. 4): commiie .+

Fourier transform of the uncorrected velocity; filter components with frequency less than 1 25 1
lowest response frequency deduced from zero-crossing rates of all 35 runs); transform back to th

! 1‘-:"1. T.I_
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domain. The resulting corrected velocity signals were checked by applying the same progw; Fror

second integration in order to compare with measured relative displacement response. 7,

. v . . . . j ; :h{j ( i)
noted deviation was the elimination of displacement baseline offset as a result of filterino ‘QL
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